↓
 

PLEA Network

Climate change information and resources for change

  • PLEA Network
  • Addiction to Growth
    • Steady State Economy
    • Universal Basic Income
    • The Law vs Politics
  • The Science
    • Impacts Observed & Projected
    • All Things Carbon and Emissions
    • BOM Updates
    • Antarctica
  • Mainstreaming our changing climate
  • Fairyland of 2 degrees
  • Population & Consumption
    • People Stress
    • Food & Water Issues
    • Equity & Social Justice
    • Ecosystem Stress
    • Security & Conflict
  • Communication
    • Resource News Sites
  • Global Action/Inaction
    • IPCC What is it?
    • Paris COP21 Wrap-up
  • Australian Response / Stats
    • Federal Government – checking the facts
  • The Mitigation Battle
    • Fossil Fuel Reduction
  • Adaptation & Building Resilience
    • Downsizing Plan B
    • City Basics for Change
  • Ballarat Community
    • Regional Sustainability Alliance Ballarat
    • Reports & Submissions
  • Brown Hill Community FireAware Network
    • FireAware Network – Neighbourhood clusters
    • FireAware Network – Understanding risk
    • FireAware Network – Be prepared
    • FireAware Network – Role of council and emergency services
    • FireAware Network – Resources
  • The Uncomfortable Corner
  • Archive Library
    • Site Topics Index
    • Links Page for Teachers
  • Countries fail again to decide timing of key IPCC climate science reports
Home→Tags oceans - Page 32 << 1 2 … 30 31 32 33 34 … 36 37 >>

Tag Archives: oceans

Post navigation

← Older posts
Newer posts →
PLEA Network

3 March 2016, Science Daily, Greenland’s ice is getting darker, increasing risk of melting. Feedback loops from melting itself are driving changes in reflectivity. Greenland’s snowy surface has been getting darker over the past two decades, absorbing more heat from the sun and increasing snow melt, a new study of satellite data shows. That trend is likely to continue, with the surface’s reflectivity, or albedo, decreasing by as much as 10 percent by the end of the century, the study says. While soot blowing in from wildfires contributes to the problem, it hasn’t been driving the change, the study finds. The real culprits are two feedback loops created by the melting itself. One of those processes isn’t visible to the human eye, but it is having a profound effect. The results, published in the European Geosciences Union journal The Cryosphere, have global implications. Fresh meltwater pouring into the ocean from Greenland raises sea level and could affect ocean ecology and circulation. “You don’t necessarily have to have a ‘dirtier’ snowpack to make it dark,” said lead author Marco Tedesco, a research professor at Columbia University’s Lamont-Doherty Earth Observatory and adjunct scientist at NASA Goddard Institute of Space Studies. “A snowpack that might look ‘clean’ to our eyes can be more effective in absorbing solar radiation than a dirty one. Overall, what matters, it is the total amount of solar energy that the surface absorbs. This is the real driver of melting.” The feedback loops work like this: During a warm summer with clear skies and lots of solar radiation pouring in, the surface starts to melt. As the top layers of fresh snow disappear, old impurities, like dust from erosion or soot that blew in years before, begin to appear, darkening the surface. A warm summer can remove enough snow to allow several years of impurities to concentrate at the surface as surrounding snow layers disappear. At the same time, as the snow melts and refreezes, the grains of snow get larger. This is because the meltwater acts like glue, sticking grains together when the surface refreezes. The larger grains create a less reflective surface that allows more solar radiation to be absorbed. The impact of grain size on albedo — the ratio between reflected and incoming solar radiation — is strong in the infrared range, where humans can’t see, but satellite instruments can detect the change. Read More here

PLEA Network

17 February 2016, The Guardian, The key to halting climate change: admit we can’t save everything. Climate change, and human resistance to making the changes needed to halt it, both continue apace: 2015 was the hottest year in recorded history, we may be on the brink of a major species extinction event in the ocean, and yet political will is woefully lacking to tackle this solvable problem. Given these dire ecological trends, limited public funding and legislative gridlock, the time is ripe for a budget-neutral, executive-branch approach for managing our natural resources: triage. A science-based triage approach should be used to classify areas and species into one of three categories: not at immediate risk, in need of immediate attention or beyond help. Refusing to apply triage implicitly assumes that we can save everything and prevent change, which we cannot. Prioritization will occur regardless, just ad hoc and shrouded. This triage system would replace the status quo of inadequately managing our full portfolio of over 1m square miles of public land and 1,589 threatened and endangered species. For areas or species not at immediate risk, we can delay action while monitoring to detect changes in that status. For example, increased temperatures and prolonged periods of drought may increase both wildfires and populations of tree-killing beetles in forests of the Pacific north-west. Knowing this, we can track these variables and explore management options that minimize risk without prematurely devoting disproportionate resources. For areas needing immediate help, we must act now. For the coral reefs of the Florida Keys and US Virgin Islands, all anthropogenic impacts (such as overfishing, pollution and coastal development) must be dramatically reduced. Otherwise, because the health of these coral reefs is currently so compromised, they are unlikely to survive the sea level rise, rising ocean temperatures and increasing acidification resulting from climate change. For species protections, it would be wise to focus on keystone species such as oysters (water filterers), parrotfish (algae eaters on overgrown coral reefs), bees (pollinators) and wolves (key predators). For areas we can no longer maintain, we must make the most difficult of choices – give up, and accept that change is not always preventable. In Alaska, it may be too late to prevent the climate change-induced shift from coniferous-dominated to deciduous-dominated stands, with unfortunate impacts on forest-dwelling species and the logging industry. In the ocean, entire fisheries can be lost from an area when species shift due to warming waters. Read More here

PLEA Network

3 February 2016, Nature Communications, Evidence for the stability of the West Antarctic Ice Sheet divide for 1.4 million years. Past fluctuations of the West Antarctic Ice Sheet (WAIS) are of fundamental interest because of the possibility of WAIS collapse in the future and a consequent rise in global sea level. However, the configuration and stability of the ice sheet during past interglacial periods remains uncertain. Here we present geomorphological evidence and multiple cosmogenic nuclide data from the southern Ellsworth Mountains to suggest that the divide of the WAIS has fluctuated only modestly in location and thickness for at least the last 1.4 million years. Fluctuations during glacial–interglacial cycles appear superimposed on a long-term trajectory of ice-surface lowering relative to the mountains. This implies that as a minimum, a regional ice sheet centred on the Ellsworth-Whitmore uplands may have survived Pleistocene warm periods. If so, it constrains the WAIS contribution to global sea level rise during interglacials to about 3.3 m above present. Read More here

PLEA Network

25 January 2016, The Guardian. Sea level rise from ocean warming underestimated, scientists say. Thermal expansion of the oceans as they warm is likely to be twice as large as previously thought, according to German researchers. The amount of sea level rise that comes from the oceans warming and expanding has been underestimated, and could be about twice as much as previously calculated, German researchers have said. The findings in the Proceedings of the National Academy of Sciences, a peer-reviewed US journal, suggest that increasingly severe storm surges could be anticipated as a result. Sea level can mount due to two factors – melting ice and the thermal expansion of water as it warms. Until now, researchers have believed the oceans rose between 0.7 to 1mm per year due to thermal expansion. But a fresh look at the latest satellite data from 2002 to 2014 shows the seas are expanding about 1.4mm a year, said the study. “To date, we have underestimated how much the heat-related expansion of the water mass in the oceans contributes to a global rise in sea level,” said co-author Jurgen Kusche, a professor at the University of Bonn. The overall sea level rise rate is about 2.74mm per year, combining both thermal expansion and melting ice. Read More here

Post navigation

← Older posts
Newer posts →

Tags

Agriculture animal response Antarctica Arctic Attribution Bioenergy Bushfire carbon capture coal Community consumption Deniers Drought Economy Emissions Extreme Events Fed Govt forest response gas geoengineering groundwater health insurance Legal Action Local Action Migration native forests New Technology nuclear oceans oil Renewables RET scheme State Govt subsidies trade agreements UNFCCC United Nations Waste Management water
©2025 - PLEA Network - Weaver Xtreme Theme
↑