↓
 

PLEA Network

Climate change information and resources for change

  • PLEA Network
  • Addiction to Growth
    • Steady State Economy
    • Universal Basic Income
    • The Law vs Politics
  • The Science
    • Impacts Observed & Projected
    • All Things Carbon and Emissions
    • BOM Updates
    • Antarctica
  • Global Cooling – Plan B??
  • Fairyland of 2 degrees
  • Denial and the Political Agenda
  • Mainstreaming our changing climate
  • Population & Consumption
    • People Stress
    • Food & Water Issues
    • Equity & Social Justice
    • Ecosystem Stress
    • Security & Conflict
  • Global Action/Inaction
    • IPCC What is it?
    • Paris COP21 Wrap-up
  • Australian Response / Stats
    • Federal Government – checking the facts
  • Communication
    • Resource News Sites
  • The Mitigation Battle
    • Fossil Fuel Reduction
  • Adaptation & Building Resilience
    • Downsizing Plan B
    • City Basics for Change
  • Ballarat Community
    • Regional Sustainability Alliance Ballarat
    • Reports & Submissions
  • Brown Hill Community FireAware Network
    • FireAware Network – Neighbourhood clusters
    • FireAware Network – Understanding risk
    • FireAware Network – Be prepared
    • FireAware Network – Role of council and emergency services
    • FireAware Network – Resources
  • The Uncomfortable Corner
  • Archive Library
    • Site Topics Index
    • Links Page for Teachers
  • Climate Change explained in one simple comic
Home→Tags oceans - Page 32 << 1 2 … 30 31 32 33 34 … 37 38 >>

Tag Archives: oceans

Post navigation

← Older posts
Newer posts →
PLEA Network

14 March 2016, The Conversation, Tipping point: how we predict when Antarctica’s melting ice sheets will flood the seas. Antarctica is already feeling the heat of climate change, with rapid melting and retreat of glaciers over recent decades. Ice mass loss from Antarctica and Greenland contributes about 20% to the current rate of global sea level rise. This ice loss is projected to increase over the coming century. A recent article on The Conversation raised the concept of “climate tipping points”: thresholds in the climate system that, once breached, lead to substantial and irreversible change. Such a climate tipping point may occur as a result of the increasingly rapid decline of the Antarctic ice sheets, leading to a rapid rise in sea levels. But what is this threshold? And when will we reach it? What does the tipping point look like? The Antarctic ice sheet is a large mass of ice, up to 4 km thick in some places, and is grounded on bedrock. Ice generally flows from the interior of the continent towards the margins, speeding up as it goes. Where the ice sheet meets the ocean, large sections of connected ice – ice shelves – begin to float. These eventually melt from the base or calve off as icebergs. The whole sheet is replenished by accumulating snowfall. Floating ice shelves act like a cork in a wine bottle, slowing down the ice sheet as it flows towards the oceans. If ice shelves are removed from the system, the ice sheet will rapidly accelerate towards the ocean, bringing about further ice mass loss. A tipping point occurs if too much of the ice shelf is lost. In some glaciers, this may spark irreversible retreat. Read More here

PLEA Network

14 March 2016, Nature Geoscience, Impacts of warm water on Antarctic ice shelf stability through basal channel formation. Antarctica’s ice shelves provide resistance to the flow of grounded ice towards the ocean. If this resistance is decreased as a result of ice shelf thinning or disintegration.1 , acceleration of grounded ice can occur, increasing rates of sea-level rise. Loss of ice shelf mass is accelerating, especially in West Antarctica, where warm seawater is reaching ocean cavities beneath ice shelves 2 . Here we use satellite imagery, airborne ice-penetrating radar and satellite laser altimetry spanning the period from 2002 to 2014 to map extensive basal channels in the ice shelves surrounding Antarctica. The highest density of basal channels is found in West Antarctic ice shelves. Within the channels, warm water flows northwards, eroding the ice shelf base and driving channel evolution on annual to decadal timescales. Our observations show that basal channels are associated with the development of new zones of crevassing, suggesting that these channels may cause ice fracture. We conclude that basal channels can form and grow quickly as a result of warm ocean water intrusion, and that they can structurally weaken ice shelves, potentially leading to rapid ice shelf loss in some areas. Read More here. See also Washington Post article here

PLEA Network

10 March 2016, Climate News Network, Antarctic techno-fix cannot slow rising seas. Pumping seawater onto the Antarctic landmass to form ice and stop sea levels rising stands little chance of success, scientists say. Sea level rise is likely to be a problem too big to handle. Geoengineers will not be able to magic away the rising tides, according to new research. In particular, they will not be able to pump water from the sea and store it as ice on the continent of Antarctica. That is because, unless they pump it enormous distances, that will only accelerate the flow of the glaciers and it will all end up back in the sea again, a study in the journal Earth System Dynamics says. Geoengineering is sometimes produced as the high-technology solution to the environmental problems of climate change: if humans don’t change their ways and start reducing greenhouse gas emissions, say the proponents of technofix, human ingenuity will no doubt devise a different answer. But, repeatedly, closer examination has made such solutions ever less plausible. Scientists have dismissed the idea that the melting of the Arctic can be reversed, have only tentatively conceded that technology could dampen the force of a hurricane, and have found that – instead of cooling the Earth – attempts to control climate change could either make things worse or seriously disrupt rainfall patterns.   On balance, scientists believe that most of the big geo-engineering ideas won’t work. Deep freeze And now a team from the Potsdam Institute for Climate Impact Research has poured cold water on the idea of pouring cold water onto the ice cap. The idea is a simple one. Are sea levels rising 3mm a year because the world is warming? Then pump the sea high onto the Antarctic landmass where it will freeze and stay frozen for a millennium. But to be sure of that, say the Potsdam team, at least 80% of the water would have to be pumped 700 km inland. That would take more than 7% of the annual global primary energy supply just to balance the current rate of sea level rise.But even in a world recently committed to a warming of less than 2°C, the seas are going to go on rising. Sea levels could rise at least 40cms by the end of the century – or possibly 130cms, with devastating consequences for low-lying coastlines: rich megacities might be able to build defences, but the poorest communities would be swept away. Read More here

PLEA Network

3 March 2016, Science Daily, Greenland’s ice is getting darker, increasing risk of melting. Feedback loops from melting itself are driving changes in reflectivity. Greenland’s snowy surface has been getting darker over the past two decades, absorbing more heat from the sun and increasing snow melt, a new study of satellite data shows. That trend is likely to continue, with the surface’s reflectivity, or albedo, decreasing by as much as 10 percent by the end of the century, the study says. While soot blowing in from wildfires contributes to the problem, it hasn’t been driving the change, the study finds. The real culprits are two feedback loops created by the melting itself. One of those processes isn’t visible to the human eye, but it is having a profound effect. The results, published in the European Geosciences Union journal The Cryosphere, have global implications. Fresh meltwater pouring into the ocean from Greenland raises sea level and could affect ocean ecology and circulation. “You don’t necessarily have to have a ‘dirtier’ snowpack to make it dark,” said lead author Marco Tedesco, a research professor at Columbia University’s Lamont-Doherty Earth Observatory and adjunct scientist at NASA Goddard Institute of Space Studies. “A snowpack that might look ‘clean’ to our eyes can be more effective in absorbing solar radiation than a dirty one. Overall, what matters, it is the total amount of solar energy that the surface absorbs. This is the real driver of melting.” The feedback loops work like this: During a warm summer with clear skies and lots of solar radiation pouring in, the surface starts to melt. As the top layers of fresh snow disappear, old impurities, like dust from erosion or soot that blew in years before, begin to appear, darkening the surface. A warm summer can remove enough snow to allow several years of impurities to concentrate at the surface as surrounding snow layers disappear. At the same time, as the snow melts and refreezes, the grains of snow get larger. This is because the meltwater acts like glue, sticking grains together when the surface refreezes. The larger grains create a less reflective surface that allows more solar radiation to be absorbed. The impact of grain size on albedo — the ratio between reflected and incoming solar radiation — is strong in the infrared range, where humans can’t see, but satellite instruments can detect the change. Read More here

Post navigation

← Older posts
Newer posts →

Tags

Agriculture animal response Antarctica Arctic Attribution Bioenergy Bushfire carbon capture coal Community consumption Denial Drought Economy Emissions Extreme Events Fed Govt forest response gas geoengineering groundwater health insurance Legal Action Local Action Migration native forests New Technology nuclear oceans oil Renewables RET scheme State Govt subsidies trade agreements UNFCCC United Nations Waste Management water
©2025 - PLEA Network - Weaver Xtreme Theme
↑