↓
 

PLEA Network

Climate change information and resources for change

  • PLEA Network
  • Addiction to Growth
    • Steady State Economy
    • Universal Basic Income
    • The Law vs Politics
  • The Science
    • Impacts Observed & Projected
    • All Things Carbon and Emissions
    • BOM Updates
    • Antarctica
  • Mainstreaming our changing climate
  • Fairyland of 2 degrees
  • Population & Consumption
    • People Stress
    • Food & Water Issues
    • Equity & Social Justice
    • Ecosystem Stress
    • Security & Conflict
  • Communication
    • Resource News Sites
  • Global Action/Inaction
    • IPCC What is it?
    • Paris COP21 Wrap-up
  • Australian Response / Stats
    • Federal Government – checking the facts
  • The Mitigation Battle
    • Fossil Fuel Reduction
  • Adaptation & Building Resilience
    • Downsizing Plan B
    • City Basics for Change
  • Ballarat Community
    • Regional Sustainability Alliance Ballarat
    • Reports & Submissions
  • Brown Hill Community FireAware Network
    • FireAware Network – Neighbourhood clusters
    • FireAware Network – Understanding risk
    • FireAware Network – Be prepared
    • FireAware Network – Role of council and emergency services
    • FireAware Network – Resources
  • The Uncomfortable Corner
  • Archive Library
    • Site Topics Index
    • Links Page for Teachers
  • Countries fail again to decide timing of key IPCC climate science reports
Home→Published 2018 → January - Page 5 << 1 2 3 4 5 6 >>

Monthly Archives: January 2018

Post navigation

← Older posts
Newer posts →
PLEA Network

10 January 2018, CSIRO-ECOS, Scientist’s 30-year search for Southern Ocean climate secrets. After more than 24 hours the ice breaker still hadn’t managed to break through the heavy sea ice and Chief Scientist Dr Steve Rintoul had secretly given up hope. All that would change in seconds though, leading to the senior scientist’s greatest but most disturbing discovery of his 30 year career. It was January 2015 when Rintoul and his team aboard the RSV Aurora Australis achieved what no others had managed – reaching the front of the Totten Glacier. They found that warm water was flooding into the cavity beneath the floating ice, melting what was thought to be a stable area of East Antarctica. The sea level rise problem had just got worse. wo years on, Rintoul will return to the Southern Ocean aboard CSIRO’s research vessel Investigator, this time further east towards the Mertz Glacier, on an expedition to piece together some of the remaining unknowns of the climate-critical region. With a physics degree from Harvard, post-graduate qualifications from MIT and Woods Hole, a post-doctorate from Princeton, and decades of experience in Southern Ocean research, Rintoul is more than qualified to lead the voyage. Read More here

PLEA Network

5 January 2018, Science Journal, Beneath the waves, oxygen disappears.  As plastic waste pollutes the oceans and fish stocks decline, unseen below the surface another problem grows: deoxygenation. Breitburg et al. review the evidence for the downward trajectory of oxygen levels in increasing areas of the open ocean and coastal waters. Rising nutrient loads coupled with climate change—each resulting from human activities—are changing ocean biogeochemistry and increasing oxygen consumption. This results in destabilization of sediments and fundamental shifts in the availability of key nutrients. In the short term, some compensatory effects may result in improvements in local fisheries, such as in cases where stocks are squeezed between the surface and elevated oxygen minimum zones. In the longer term, these conditions are unsustainable and may result in ecosystem collapses, which ultimately will cause societal and economic harm. Read More here

PLEA Network

5 January 2018, The Guardian, Oceans suffocating as huge dead zones quadruple since 1950, scientists warn. Ocean dead zones with zero oxygen have quadrupled in size since 1950, scientists have warned, while the number of very low oxygen sites near coasts have multiplied tenfold. Most sea creatures cannot survive in these zones and current trends would lead to mass extinction in the long run, risking dire consequences for the hundreds of millions of people who depend on the sea. Climate change caused by fossil fuel burning is the cause of the large-scale deoxygenation, as warmer waters hold less oxygen. The coastal dead zones result from fertiliser and sewage running off the land and into the seas. The analysis, published in the journal Science, is the first comprehensive analysis of the areas and states: “Major extinction events in Earth’s history have been associated with warm climates and oxygen-deficient oceans.” Denise Breitburg, at the Smithsonian Environmental Research Center in the US and who led the analysis, said: “Under the current trajectory that is where we would be headed. But the consequences to humans of staying on that trajectory are so dire that it is hard to imagine we would go quite that far down that path.” “This is a problem we can solve,” Breitburg said. “Halting climate change requires a global effort, but even local actions can help with nutrient-driven oxygen decline.” She pointed to recoveries in Chesapeake Bay in the US and the Thames river in the UK, where better farm and sewage practices led to dead zones disappearing. However, Prof Robert Diaz at the Virginia Institute of Marine Science, who reviewed the new study, said: “Right now, the increasing expansion of coastal dead zones and decline in open ocean oxygen are not priority problems for governments around the world. Unfortunately, it will take severe and persistent mortality of fisheries for the seriousness of low oxygen to be realised.” Read More here

PLEA Network

4 January 2018, Geophysical Research Letters, Decline in Antarctic Ozone Depletion and Lower Stratospheric Chlorine Determined From Aura Microwave Limb Sounder Observations. The Antarctic ozone hole is healing slowly because levels of the man-made chemicals causing the hole have long lifetimes. We use Microwave Limb Sounder (MLS) satellite data to measure O3 over Antarctica at the beginning of winter and then compare it to O3 near the end of winter to calculate depletion. During this period, nearly all O3 change is due to depletion. MLS also measures HCl, and when ozone levels are very low, nearly all the reactive chlorine species (Cly) are converted to HCl. Clyvaries a lot from year to year from atmospheric motions. Fortunately, MLS measures nitrous oxide (N2O), a long-lived gas that also varies with the motions. Using the ratio of Cly to N2O, we find that there is less chlorine now than 9 years ago and that Cly has decreased on average about 25 parts per trillion/yr (0.8%/yr). The O3 depletion we calculate from MLS data responds to changes in the Clylevels, and the ratio of the change in ozone loss to the change in Cly matches model calculations. All of this is evidence that the Montreal Protocol is working—the Cly is decreasing in the Antarctic stratosphere and the ozone destruction is decreasing along with it. Read More here

Post navigation

← Older posts
Newer posts →

Tags

Agriculture animal response Antarctica Arctic Attribution Bioenergy Bushfire carbon capture coal Community consumption Deniers Drought Economy Emissions Extreme Events Fed Govt forest response gas geoengineering groundwater health insurance Legal Action Local Action Migration native forests New Technology nuclear oceans oil Renewables RET scheme State Govt subsidies trade agreements UNFCCC United Nations Waste Management water
©2025 - PLEA Network - Weaver Xtreme Theme
↑